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THIN OBLIQUE

SUMMARY

AIRFOILS AT SUPERSONIC SPEED

By ROBERT T. JONES

The well-known methods of thin-airfoil theory hare been
ertended to oblique or smeptback airfm”18 of finite wpect ratio
moring at 8uper80nic speeds. The case8 considered thus far are
symmetrical airfoila at zero lijl hating plun form8 bounded by
straight line8. Because of the conical form of the elementary
jlow fields, the re%ult8 are comparable in simplicity J% the
results of the two-dimensional thin-airfoil tlwory for subsonic
8peed8.

In the case of untapered airfoils swept back behind the
Mach cone the pressure distribu!wn at the center section h
m“milar to that gicen by the Ae&vt theory for a 8traight airfoil.
U“ith increasing distuncejrorn the center section the distribution
approaches th form gn>en by the subsonic-$ow -theoy. T%e
pressure drag is concentrated chie$y at the center section and
for long w“ngs a slight negatire drag may appear on outboard
sections.

INTRODUCTION

In reference 1 it was pointed out that. the wave drag of
an infinite cylindrical airfoil disappears when the airfoil is
yawed to an angle greater than the Mach angle. This
observation led to the conclusion that the drag of a finite
airfoil could be greatly reduced by the uw of snflicient
wveepback. W5th such a svwptback wing the wave drag
would be associated with departures from the ideal two-
dimemional flow at the root or tip sections and wouId thus
be a function of the aspect ratio. ‘rhe present report extends
the theory of reference 1 to take account of these effects.

The treatment is based on the theory of small disturbances
in a frictionkss compr-ible fluid. The ideaLizedfluid and
its equationa of motion are identical with those employed in
acoustics in the theory of sound waves of small amplitude.
The application of the theory is thus limited to bodies having
thin cross sections so that the velocity of motion imparted
to the fluid is small relative to the velocity of sound and so
that the pressure disturbances produced are small relative
to the ambient pressure.

The adaptation of the sound-wave tlwory to the aero-
d-ynamics of moving bodies was suggested many yesrs ago
by Prandtl. The theory was applied by Ackeret (reference 2)
to thin airfoils moving at supersonic speed. Ackeret’s
treatment is limited, however, to Mnitely long cylindrical
airfoils moving t.ransvemely. The present theory may be
considered an extension of Ackeret’s theory to take into
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account wings of finite span and wings having tapered or
mveptback plan forms. In the case of sweptback plan forms
the results me markedly different from those obtained by
the Ackeret theory and approach the values indicated in
references 1 and 3.

In reference 4 Busemwm describes a method for caL
culating the supersonic flow over bodies which produce a
conical pressure field. Busemann shows that the flow
around cones of circular cross sections as well as t+e flow
around the tip of a rectangular lifting surface sat.ie&a
this condition. The fact that a great variety of three-
dimensional flows can be constructed by the superposition of
conicaI and cylindrical flow fields leads to an essential sim-
plification of the airfoil theory at supersonic speeds.

The present treatment difFerafrom Buaema.nn’sin that it is
further limited to flat bodies, that is, bodies which are thin
in both longitudinal and transverse sections. This addi-
tional restriction leads to a much simpler mathematical
treatment and one -which is applicable to a wide variety of
airfoil shapes. Symmetrical nonlifting bodies are E&o
treated in reference 5 where use is made of integral expres-
sions corresponding to the velocity potential of plane-source
distribution.

SYMBOLS

flight velocity
Mach number
coordinates
point on X-a.xia
limit of integration
disturbance-velocity potential
disturbance-velocity components
value of u at xl
value of u for conjugate arrangement
local pressure

()
dynamic pressure ~PV2

density of air
Legendre functions
source-strength factor
differential operator
drag coef6cient
thicknew of wing
slope of line source (absolute value)
chord of wing
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THE OBLIQUE LINE SOURCE

The assumptions of small disturbances and a constant
velocity of sound throughout the fluid lead to the well-
known linearized equation for the velocity potential @ (see
reference 6)

(1–M’)4J..+&+#.z=o (1)

The analysis is simplhled by introducing the coordinates

Xl=x

y,=@Ty (2)

%=~mz

Dropping the subscripts from the transformed coordinate
gives

4%Z–@,U—46Z=0 (3)

According to the thin-airfoil theory the pressures on the
transformed a.irfoil are given by

4=2 2
Qv

-%? (2+0) (4)

and the slope of the airfoil surface ~ is equal to the elope

of the streamlinesnear the chord plane; that is,

dz w
Zi=v

–L *
–T’az (Z-+o) (6)

The use of the coordinate transformation, equation (2), will
be understood in tbe folIowing development, The results
are therefore applicable directly to a Mach number of W.
For an equivalent airfoil at another Mach number the y-
a.nd z-coordinates of the surface wilI be multiplied by
~~” while the pressure coefficients at corresponding
points wiU be divided by the quantity W-1,

The elementary solution of equation (3) for a point source
is

1.

‘=~”’ ““-

This solution is directly related to the subsonic potential

1
+’=.& +f+#-” .-. . _..

In the subsonic case the equipotential syrfac.esare, however,
ellipsoids, whereas in the supemonic case the equipotential
surfacea are hyperboloids limited by the Mach cone. (See
reference 6 for the derivation of these elementary solutions.)

Because of the linearity of equation (1) a solution maybe
used to denote one of the velocity components rather than
the velocity pokmtiaL The specification of one component
in this manner actually describes the whole flow field since

the other components may be obtained by integrating the
given component-to obtain the veIocity potential qnd then
differentiating the results along the desired directions to ol.)-
tain th~ dadred components. This proc.adure is especially
useful in”the thin-airfoil theory, where the compld.a velocit.y
field may not be required.

Adopting the foregoing procedure, one may write

1

‘=-F=7=
Since u is proportional to the pressure, such a solution cor-
responds to a point source in the pressure field. The
solution for an oblique Iine source may be obtained by
integrating for the effect of a row of point sources along L11o
Luey=mx. It will be shown that such a line source satisfies
the boundary condition for a thin wedge-shape body. This
solution, as well as other expressions relating to oblique air-
foils, can be most conveniently expressed by referring to tho
obIique coordinates

X’=x—m$l

y’=y–mz

z’= JGZ 2

(See fig. 1.) It maybe shown that if any functionj(x, V, z)
is a solution of

.fZrfw–.fts=o

thenj(x’, y’, z’) is also a solution. In particular, tho point-
source solution becomes

—

Y

‘--Jv—

FIcwrcE l.—Obllque coordlnatcz.

zt-z-mv
~Jqf-mz

2’. +=72
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Hence the integration for the eflect of an inclined line of
sourcw may be performed -directly along the oblique z’-mie;
thus, for m<l.O

JPI d(’
u= I

~ J(x’-.)2)y-z’’-z’~

I

=1 COSh-1~+2 (6)

where E’1is tha position of the last source whose Mach cone
inchdes the point (z’, y’, z’) and is given by

g’l=y.,w

When m approaches 1.0 the source Iine approaches coin-
cidence with the Mach cone, corresponding to a transverse
velocity component equal to the velocity of sound.

For values of m greater than 1.0 the integration yields

‘u= —Ii Cos-l xt,Iy’a+ zf~ (7)

It will be seen that in this case I is imaginary.
The vertical velocity near z=O, which determines the

shape of the boundary, maybe determined by integrating u
with respect to z and then diftkrentiating the resulting
velocity potential with respect to z; thus (see appendix),

a#J
“z

.*T; J--i (8)

if z+O and y’<0. If y’>0, w=O. There is thus a discon-
tinuity in the vertical velocity of the streanilinee when they
cross the line source at y’ =0. “For small values of I/m this

discontinuity in vertical velocity agre= with the boundary
condition for a simple wedge shape having a small wedge
angle. (See fig. 2.)

If the source strength I is held constant and m is allowed
ti approach zero, the wedge, angle ultimately becomes large.
At m= O the line source actually satisties the boundary con-
dition for the circukm cone (reference 7), but it is found that
the slope of the conictd boundary does not agree with the
slope of the streamlines near 2= O and hence the theory no

longer holds. The condition ~-O thus represents the trmsi-

tion from an oblique airfoil to a body of revolution and w-W
be avoided in the present analysis by restricting the formulas
to flat bodies, that is, airfoils that are thin in both longitudinal
and transverse section.

ALRFOI.LOF WEDGE SECTION

Over the wedge section near the plane z=O, the formukt (6)
becomes simply

‘=1 Co’h-’ %
(9)

u

I I
U,ii-.cosh~ j+..

‘:

,,” __ —- ————--—-— ~=-

0 /.0 I/m
[ XIV

FIGURE2.-Pressure field for oblique wedge where m<l.O. ~~ o
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where ]@ ] denotes tho absolute magnitude of # =y— mx.
The pressure is thus constant along the radial lines

;=const’ant (lo)

and is conveniently represented by the variation along a line
paralIel to the X-a.xia. Figure 2 shows the oblique wedge-
shape figure corresponding to a line source with m<l.O. In
this case the pressure field is cofined to the interior of the
Mach cone ~—ys— @=x’% —y’z— Z’9=0 and the &eory,

wilike the Ackeret theory, indicates a stagnation point along
the leading edge. (Actually, of course, the thin-airfoil
theory shows an infinite velocity at such points, but this is
to be interpreted as a velocity of the order of magnitude of
the flight velocity V. The pressure to be expected along the
leading edge is the stagnation pressure corresponding to the
transverse velocity component.)

Given ‘z–?~– ~J the wedge angle measured in downstream

sections, the source strength must vary with m according to

(from equation (7)). Then

(11)

(12)

If m exceeds 1.0, the leading edge of the airfoil will lie out-
side the Mach cone. In this case . ..—

(13)



270 REPORT NO. 85 l—NATIONAL ADVISORY CO.MM3?TEE FOR AERONAUTICS

In the region between the leaclirigedge and the .Mach cone

‘Os-’6
, is constant and equaI to m; hence the pressure in

this region is constant, that is,

Figure 3 illustrates this result.
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Q 2UFIGWM8.—PremureMfd for oblique wedge where rn>l,% * -~.

If m+ co a semi-irdlnite airfoil with its leading edge at
right angks to the direction of flight is obtained; h-ere -

x—my
(15)

and $=2 $ wherever y> IE2. This value agreestiith

the A~keret theory.

AIRFOILS BOUNDED BY PLANE SURFACES

The distribution of pressure over symmetrical airfoils
bounded by plane surfaces can be obtained by superimposing
the pressure fields for several line sources and sinks. This
superposition is greatly simplified by the conical form of the
pressure field for each single line source. Becaus6 of this
form, the whole distribution in the plane z=O is, in effect,
represented by a single curve, If the veloc.ity field for a line
source beginning ~t the origin (equation (6)) is denoted by u

and thnt beginning at x= – 1 is deno[ed by u-l, and sc forth,
the sum

U-1—u+l

represents the velocity over a plate of uniform thickncse
having a @eled le~ing edge of constant width. (Seo fig, 4,)
Similarly

u_l —2?J+’u+~

represents the pressure field for an airfoil having diamond-
shape cro~sections,

The superposition required for several sources or sinks
can be accomplished by manipulation of a single curve if it
is remembered that u is a function of the ratio x/y. I?iguro 4
illustrates this process for a source and a sink. In terms of
the ratio x/y the separation of source and sink and hence
the scale of the chord length continually diminishes with
increasing distance from the root section.

At large distances from the vertex (z’+ co) the expression
(for m<l .0)

X’+1 ‘–1u_~—’IQ N Cosh-1—— Cosll-1-+—{y’–ml Iv+d
(16)

is found to appronch the value

]Og Y:+m I #
()

;Y _m=lWo -X (17)

where QOk-”the Legendre function. (See reference 7.)
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In the thin-airfoiI
can be shown that if

then

THIN OBLIQUE

theory for subsonic speeds it

waPJz)

+ (18)

uaQn(z) (19)

since Neumann’s formula (reference 8, p. i 16)

1 ‘1 ~n(t) @
Q“=J-, (z–g) (20)
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(U.2

may be interpreted as the integration for the velocity distri-
bution due to an army of sources of strength

w dg=P.(:) dg
f

along the chord of the airfoil. The expression Q % of equa-

tion (17) thus repr-ents the subsonic pressure distribution
over the beveled edge.’

At the root section (y= O) only the forward source need
be considered since-the airfoil mrfate is ahdfid of the Mach
cone originating at the rear source. Here

U_l —U+l cccosh-l
Z+l —my

111-~(z+l)l

wcosh-l + (21)

and the pressure over the root section is thus constant, as
given by the Ackeret theory, but is altered in magnitude
by the obliquity.

The oblique -winglying behind the Mach lines thus shows
the Ackeret type of pressure distribution over the foremost
section and a progressive change along the span from this
distribution to the subsonic type of distribution. Since the
subsonic type of distribution shows no preesure drag, there
is a continuous falling off of the pressure drag with increasing
distance from the root section. The pressure drag of the
oblique wing thus arises chiefly on the foremost section, and
it follows that the drag coefficient of the wing as a whole.
diminishes with increasing aspect ratio. It will be shown
subsequently that the effect of cutting the wing off along a
Line y= Constant to produce a downstream tip causes a
reduction of the pressure drag on the adjacent sections; and
if the aspect ratio is sufficiently high, the pressure drag in
the region of the downstream tip may actually be negative.

If the wing lies ahead of the Mach lines (m>l.0) the
Ackeret type of pressure distribution occurs and a pressure
drag arisesover the whole length. In this case both u and w
are constant over the bcvekd part at a distance from the origin.

I Sfnrflarly ff P.(t)dt Is taken as the ehordwfee dlstrfbutkm of vortkfty,

Sba P.(.Z)

w a Q. (z)

“%

The first of MY serbw of rdrfofleIs tbe ember shape eorved to supporta onlfonn load.

A.ibch[he. ~ , ‘w‘A{ ~
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FIGmE 5.-V~iation of pressure dlstrfbut!an abng span of eweptback wing. m-tan W.
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FIwas 6.-Varfetlon of drag cMEefentwith Uetanco froro rod wctfon for sweptbsck wing.
Walge seetioq M-1.4.

The treatment thus far applies to semi-ifinite cylindrical
wings having root sections near the origin. A complete
sweptback wing may be obtained by the addition of a sym-
metrical or conjugate arrangement of source lines below the
X-axis. Values of u for this conjugate arrangement maybe
denoted by E. Figures 2 and 3 show 77for a single inclined
source and @ure 5 shows calculated pressure distributions
at several sections along the span for a complete svreptback
airfoil having beveled sections. The addition. of the con-
jugate source lines doubles the pressure at the root section,
but this interference effect faIIs off rapidly fdong the span.
It is noted that, as in i5gnre 4, the most significant change
in pressure distribution occurs along the expansion wave
originat”q at the trailing edge of the root section. Figure 6
shows the variation in pressure drag along the span for this
airfoil obtained by integrat”hg the chord,vise components of
pressure at the different sections.

The addkion of a reversed source-sink distribution having
its origin displaced to a point 01 (see fig. 7) will show the
effect of cutting the wing off in a direction parallel to the
direction of fight. It will be evident that the effect of such
a tip is characterized by the subtraction of the curves Z and
is limited to the area lying within the Mach cone which
originates at the tip. It is interesting to note that pressure
distributions of the Ackeret ty-pe, except reversed in sign,
are added near the tip; hence, cutting the tip off in this man-
ner reduces the drag of adjacent sections.
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///

lwlrm 7.
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+m +
Sectim

-Addttion of revrxssd source+lnk dk,trtbution to ~OdUC13tip.

Figure 8 shows the pressure distributions over a rectangu-
lar &foil having a leading edge at right angle: to }+ fl&y.
In the triangular axea ahead of the Mach cones orgmating
at the tips the pressure is constant, as “givenby the Ackeret
theory, whereas behind tlwe Mach cones the pressure drops
sharply.

AIRFOIL OF BICONVEX SECTIONS

Curved surfacesrequire a continuous distribution of sources
and sinks dined with the generators of the surface. Each
elementary source line causes an infinitesimal change in
direction of the surface and hence the slope at any point may
be obtained by adding up the effects of all sources ahead of
that point. Thus

(22)

m-.

For airfoils of ccmstant chord, m will be a constant and the
integrationscan be performed without difficulty. The simplest
case is that of constant curvature, which leads to proties
formed from circular arcs.

In order to obtain a biconvex profile, it is necessary to
introduce tite sources of strength sufficient to form the
desired angle of intmsection of tie arcs at the leading rmd
trailing edges, together with a uniform distribution of sinks
along the chord line between the two sources. These pro-
fdes thus require a uniform distribution of sources or sinks,
which may be obtained by integrating the elementary solu-
tion for the line source (equation (6)). The resulting solution

1

may be denoted by ~ u and is, for m<l,
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Inasmuch as the elementary solution u is of tho form

f@, the integrated solution appears in the form

and will be conveniently represented
all spanwise stations, namely,-

by a curve typical of

For a closed profile intersecting the X&is at the points + 1
there is obtained

(
%=u-l+u+l—y +p++l

)
(24)
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FIGUBE9.—Prewuce dfetrfbutkn over wing of bleonvex section. ‘~~.

This superposition may be accomplished conveniently by

transposing and adding the typical curves u and $ U, (See
fig. 9.)

It will be found that if m is less than 1.0 the velocity
distribution approaches, with increasing distance from the
root section, the form given by the subsonidlow theory for
an airfoil of biconvex section, that is,

(25)

At the root section, however, the form is simply that given by
the Ackeret theory for a straight airfoil although the values

are reduced in magnitude by the factor CO*-1 L

&“

The pressure distribution and the variation of drag along
the span for the bilaterally symmetrical wing are shown in
figures 10and 11.

CONICAL SURFACES

For tapered airfoik both m and 1 wilI be functions of ~.
It is easily seen that closed surfaces can be obtained only if
the reIation between m and c is such that the line sources
have a common point of intersection, as in *e 7. If this
point is denoted by %, yO

Ifo
‘=FE

.

I
:1

I
FIWC’EE10.—Preemre cUetrfbutIon et M9erent pofnte aIong spon. Bkonvex wfng.

.%ctbn.porallel to fi~htvebc[iy
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t I I

.04

.(22‘ k
G
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0 z 3 5 6

DL&nce frm roof sectim4in~2 d-m-d lengths
7

Bmmw 11.—Verfatfonof dreg eoeflicfent wfth dfetanm IYOIOrcmteectfon for wtoge of bfeonves

eectfon. M= I.* ~-lo PETeent.

The surface obtained is one generated by a line passhg
through the tied point a, y. and hence is a conical surface.

The prassure over the tapered airfoil requires the integra-
tion of

Jrz-u
u=

El 1
cosh-l ~ $ d[

Y-Y dI=
El ‘wd~.

where & is the location of the vertex of the airfoil and

dIVmo?z
@’; ~~d(z
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In conclusion it should be noted that the pressures have
been derived for an airfoil transformed according to equa-
tions (2). The pressures at corresponding points of the
original airfoil are to be obtained by dividing by M’—’—1.

LANGLEY h’fEbiORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOB AERONAUTICS,
LANGLEY l?IELD, VA., May 9S, 1946.

APPENDIX

EVALUATION OF INTEGRAL OF EQUATION (8)

For m< 1,0 the disturbance is zero outside the hiach cone
and the range of integration should be extended only from
xl= -9 tiox, that is,

J:.u~x=J&icosh-l.&dX
(for unit source strength). Furthermore,

since the integrand is zero at the lower limit. Now

?) /
cosh-l

—X’Z’J1—??12
% Jy’:+ z~’-(y’i+ #jJ2’2_y;2_z’a

and hence the integral

u)= dx

(Al)

(A2)

(A3)

(A4)

must be evaluated.
First it is noted that the integral v~nishes with z em.ept

in the neighborhood of the Mach cone ( Z’Z—y’*—z~i=o)
and in the neighborhood of the line source (#=0). Near
the Mach cone Y’*+ z’*~x’2, so that

Since the latter integral approaches zmo with z, there is no
contribution to equation (A4) in the region of the Mach
cone. On the other hand, near the line source y’+ and
4#_yt2 — z’%’; hence, as z’+0,

=: tan-l $+ Constant (A6)

The vahe of the integnd changes from O to r in _wossing
over the line source at y’= O and is positive or negative de-
pending on whether z’ approaches zero from the positivc or
negative side of the xy-plane. Hence

... ...-.--—— —
w= k’; \m

..
If m k ‘greater than 1.0,

and the flow disturbance extends outaide @e Mach cone to
a region bounded by plane waves extwding from the line
source &d tangent to the Mach cono. (See fig. 12.) Thti
equation of these planes can be easily shown to bo y’*+z’*= O;
hence for m>l.O the lower limit of integration is given by

Y
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FIGURE 12,–InfomntIon petihent to evaluation of equation (S) form>l.O. (Seeamndlx,)



or
~i=y— J7=lz

m
Then
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$zP’’=al’’’-’,va’

(As)

(A9)

In this case u does not go to zero at the lower limit but is
equal to T. In all other regions, however, the integral
approaches zero uniformly with z as in the preceding case;
hence

as before.
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